9 research outputs found

    An Event-Triggered Robust Attitude Control of Flexible Spacecraft With Modified Rodrigues Parameters Under Limited Communication

    Get PDF
    The attitude regulation of spacecraft using continuous time execution of the control law is not always affordable for the low-cost satellites with limited wireless resources. Of late, within the ambit of control of systems over networks, event-triggered control has proved to be instrumental in ensuring acceptable closed-loop performance while respecting bandwidth constraints of the underlying network. Aligned with these design objectives, a robust event-triggered attitude control algorithm is proposed to regulate the orientation of a flexible spacecraft subjected to parametric uncertainties, external disturbances, and vibrations due to flexible appendages. The control law is developed using a state-dependent single feedback vector, which further assists in obeying the constrained network. The current information of this vector is updated to the onboard controller only when the predefined triggering condition is satisfied. Thus, the control input is updated through communication channel only when there is a need, which ultimately helps in saving the communication resources. The system trajectories, under the proposed approach, are guaranteed to be uniformly ultimately bounded (UUB) in a small neighborhood of origin by using a high gain. Moreover, the practical applicability of the proposed scheme is also proved by showing the Zeno free behavior in the proposed control, i.e., it avoids the accumulation of the triggering sequence. The numerical simulations results are indeed encouraging and illustrate the effectiveness of the designed controller. Moreover, the numerical comparative analysis shows that the proposed approach performs better than periodically sampled data technique and sliding mode-based event-triggered technique.Qatar UniversityScopu

    Reduced order modeling and sliding mode control of active magnetic bearing

    Get PDF
    Due to the accelerated growth in the field of power electronics and controller design techniques, the usage of the active magnetic bearing has picked up in industries. Active magnetic bearing helps the rotor to rotate freely without any physical contact. In brief, this paper develops a model of an active magnetic bearing using the finite element method, and its associated reduced order model, followed by the development of a robust control strategy. COMSOL software is used to perform three-dimensional simulation of an active magnetic bearing system. The state space system matrices are extracted from the finite element method, and a linear time-invariant state-space system is generated in MATLAB. Since the original system is large, the reduced order model is constructed. Then, based upon the reduced order model, a sliding mode control is designed to improve the regulation performance of an active magnetic bearing under unmodeled uncertainties. The stability analysis of closed-loop reduced order model with unmodeled uncertainties guarantees the finite time convergence of system states using Lyapunov theory. Further, it is proved that the same control law will also provide satisfactory performance for the original model using the reduced order model as an observer. The numerical simulation is carried out to illustrate the effective performance of the proposed controller for the reduced model as well as the original model with multiple initial conditions. The proposed work offers an alternative approach of using the reduced order model instead of the original model for the controller design of an active magnetic bearing.This publication was made possible by Qatar University High Impact Research Grant # [QUHI-CENG-19/20-2] from the Qatar University. The publication charges are funded by the Qatar National Library, Doha, Qatar.Scopu

    Comprehensive performance analysis of flexible asynchronous AC link under various unbalanced grid voltage conditions

    Get PDF
    A flexible asynchronous AC link (FASAL) system is a technology that interconnects two power system networks operating at the same or different frequencies. The FASAL system is a newly developed technology; therefore, it requires a thorough investigation under different unbalanced grid voltage conditions for better behavioral understanding and appropriate future controller design. In this paper, the FASAL system is analyzed under various symmetrical and asymmetrical unbalanced grid voltage conditions. Moreover, the performance of the back-to-back voltage source converter (VSC) based HVDC link is also analyzed to establish its comparison with the FASAL system under the same conditions. The FASAL and VSC-HVDC systems are modeled in PSCAD/EMTDC software environment. The simulation results illustrate that the FASAL system performance is better under transient as well as steady-state conditions. Furthermore, the reduction in power at the receiving end side is also lesser in the FASAL system. For example, a 10% sag contributes only a 15% dip in power in the FASAL system, whereas VSC-HVDC reports a 30% power dip for the same sag condition.The APC is funded by the Qatar National Library, Qatar.Scopu

    Prescribed Performance-Based Event-Driven Fault-Tolerant Robust Attitude Control of Spacecraft under Restricted Communication

    No full text
    This paper explores the problem of attitude stabilization of spacecraft under multiple uncertainties and constrained bandwidth resources. The proposed control law is designed by combining the sliding mode control (SMC) technique with a prescribed performance control (PPC) method. Further, the control input signal is executed in an aperiodic time framework using the event-trigger (ET) mechanism to minimize the control data transfer through a constrained wireless network. The SMC provides robustness against inertial uncertainties, disturbances, and actuator faults, whereas the PPC strategy aims to achieve a predefined system performance. The PPC technique is developed by transforming the system attitude into a new variable using the prescribed performance function, which acts as a predefined constraint for transient and steady-state responses. In addition, the ET mechanism updates the input value to the actuator only when there is a violation of the triggering rule; otherwise, the actuator output remains at a fixed value. Moreover, the proposed triggering rule is constituted through the Lyapunov stability analysis. Thus, the proposed approach can be extended to a broader class of complex nonlinear systems. The theoretical analyses prove the uniformly ultimately bounded stability of the closed-loop system and the non-existence of the Zeno behavior. The effectiveness of the proposed methodology is also presented along with the comparative studies through simulation results

    Finite-Time Adaptive Higher-Order SMC for the Nonlinear Five DOF Active Magnetic Bearing System

    No full text
    The active magnetic bearings (AMB) play an essential role in supporting the shaft of fast rotating machines and controlling the displacements in the rotors due to the deviation in the shaft. In this paper, an adaptive integral third-order sliding mode control (AITOSMC) is proposed. The controller suppresses the deviations in the rotor and rejects the system uncertainties and unknown disturbances present in the five DOF AMB system. The application of AITOSMC alleviates the problem of high-frequency switching called chattering, which would otherwise restrict the practical application of sliding mode control (SMC). Moreover, adaptive laws are also incorporated in the proposed approach for estimating the controller gains. Further, it also prevents the problem of overestimation and avoids the use of a priori assumption about the upper bound knowledge of total disturbance. The Lyapunov and homogeneity theories are exploited for the stability proof, which guarantees the finite-time convergence of closed-loop and output signals. The numerical analysis of the proposed strategy illustrates the effective performance. Furthermore, the comparative analysis with the existing control schemes demonstrates the efficacy of the proposed controller

    Voltage Independent Reactive Current Based Sensor for Static VAr Control Applications

    No full text
    The use of renewable energy-based converters is continuously increasing in modern power systems which inject voltage harmonics in the line. In this work, a novel, simple technique based on a binary (on/off) control of an analog switch is proposed to measure reactive current and reactive power. This method eliminates the requirement of finding sin( Ï•\phi ) and its multiplication with the current signal in reactive power computation. The proposed transducer gives a dc signal proportional to the reactive current of a power system, i.e., I{I} sin( Ï•\phi ), which is suitable for static VAr compensator (SVC) applications. This transducer output is sufficient as the terminal voltage is common for the measurement as well as for the compensation current. Thus, the required current of SVC for compensation is equal to or proportional to I{I} sin( Ï•\phi ). Moreover, voltage harmonics are common in a power system. These harmonics affect the measurement of fundamental reactive power. This method eliminates the need for voltage measurement and hence the measurement is independent of the harmonics of the voltage, which reduces the measurement error. The proposed method is proved mathematically, and its performance is successfully validated through simulation analysis and hardware implementation. The advantages of the proposed technique are linearity of the transducer output, simple working, inexpensive hardware realization, fast response, and online measurement capability. The response time of the transducer is one cycle of supply voltage which is suitable for SVC applications. 2001-2012 IEEE.Scopu

    A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries

    No full text
    With an accurate state of charge (SOC) estimation, lithium-ion batteries (LIBs) can be protected from overcharge, deep discharge, and thermal runaway. However, selecting appropriate algorithms to maintain the trade-off between accuracy and computational efficiency is challenging, especially under dynamic load profiles such as electric vehicles. In this study, seven different widely utilized online SOC estimation algorithms were considered with the following goals: (a) to compare the accuracy of the different algorithms; (b) to compare the computational time in the simulation. Since the 2-RC battery model is highly accurate and not very computationally complex, it was selected for implementing the considered algorithms for the model-based SOC estimation. The considered online SOC estimation performance was evaluated using measurement data obtained from experimental tests on commercial lithium manganese cobalt oxide batteries. The experimental analysis consisted of a dynamic current profile comprising a worldwide harmonized light vehicle test procedure (WLTP) cycle and constant current discharging pulses. In addition, the performance of the considered different algorithms was compared in terms of estimation error and computational time to understand the challenges of each algorithm. The results indicated that the extended Kalman filter (EKF) and sliding mode observer (SMO) were the best choices because of their estimation accuracy and computation time. However, achieving the SOC estimation accuracy depended on the battery modeling. On the other hand, the estimated SOC root means square error (RMSE) using a backpropagation neural network (BPNN) was less than that using a Luenberger observer (LO). Moreover, with the advantages of BPNNs, such as no need for battery modeling, the estimation error could be further reduced using a large size dataset
    corecore